Predoctoral Training

Predoctoral trainees are selected on a competitive basis from current graduate students in the following graduate programs at the University of Minnesota:

Students in the MCDB&G and BMBB programs begin their training in a combined program in Molecular, Cellular and Structural Biology (MCSB).These programs provide broad training in core disciplines that are essential to cancer research: biochemistry, cell biology, immunology, microbiology and genetics. The curriculum within each program allows the student and faculty preceptor the opportunity to design a program of training that incorporates core knowledge in these disciplines, while allowing for specialization in a specific area. Specific graduate-level courses in Biology of Cancer and Translational Cancer Research are offered by the MICaB graduate program and are required for all trainees supported by the Cancer Biology Training Grant.

Current Predoctoral Trainees

Expand all

Hallie Hintz

LeBeau Lab

Solid tumors consist of malignant cells and a heterogeneous mixture of supporting stromal cells that are essential for tumor growth beyond a few millimeters. This complex and immunosuppressive tumor microenvironment remains a significant challenge to cancer treatment. Non-malignant stromal cells called cancer-associated fibroblasts exist exclusively in the tumor stroma and modulate adaptations to the microenvironment that promote survival and progression of the disease. Castration-resistant prostate cancer (CRPC) has a high stromal composition and the presence of highly reactive stroma enriched with cancer-associated fibroblasts directly correlates with poor prognosis. My work in the laboratory of Dr. Aaron LeBeau aims to address CRPC treatment limitations by developing a stroma- targeted chimeric antigen receptor (CAR) natural killer (NK) cell immunotherapy. This approach is based upon the hypothesis that eliminating the aiding and abetting tumor stroma with CAR NK cells will lead to reduction in tumor burden and tumor-mediated immunosuppression. In contrast to healthy tissues, cancer-associated fibroblasts over-express the membrane-bound serine protease fibroblast activation protein alpha (FAP) in the tumor microenvironment. This expression pattern is characteristic of 90% of all epithelial tumors, including CRPC, which makes FAP an attractive target for CAR NK cell immunotherapy. Existing immunotherapies for solid tumors have limited efficacy and more work is needed to understand the intricacies of the tumor microenvironment and to tailor CAR-based therapeutic approaches to these types of cancer. My research will contribute to a better understanding of the interactions among tumor, stromal, and CAR NK cells and could facilitate the development of immunotherapies for other refractory solid tumors containing supportive stromal cells. Because my approach targets genetically-stable stromal tissue, and not antigens expressed on mutation-prone cancer cells, FAP-CAR NK cells could be an effective therapy to kill heterogeneous tumor populations.

Abir Majumdar

Levinson Lab
(612) 624-1929

Cyclin dependent kinase 2 (Cdk2) is a mitotic checkpoint protein, the aberrant activation of which is implicated in triple negative breast cancer, high grade serous ovarian cancer, and glioblastoma (among other types of cancer). Cdk2 comprises an attractive therapeutic target because it is not essential in mitosis, and thus inhibition of Cdk2 can theoretically be accomplished without the expense of normally functioning cells. Despite significant efforts, however, selective inhibition of Cdk2 has remained elusive, most likely due to the inability of ATP-competitive inhibitors to differentiate between Cdk2 and the closely related and indispensable Cdk1. This is a result of an insufficient understanding of the mechanisms and the degree to which molecules that bind to Cdk2 affect its conformation. Abir’s project involves the use of a number of spectroscopic tools to tease apart the dynamic mechanism of activation of Cdk2 and understand the contributions of biochemical effectors to its conformation. Using a combination of EPR spectroscopy and high-throughput FRET assays, Abir and the Levinson Lab have shown that 1) Cdk2 exists in a delicate conformational balance between the active and inactive states, 2) that Cdk2 requires independent inputs (cyclin binding and phosphorylation) for a full shift to the active state, and 3) ATP-competitive inhibitor candidates that have failed in clinical trials dramatically tilt the conformational balance towards the structurally conserved active state, leading to the problem of poor selectivity. This research has demonstrated that an understanding of the biochemical context of kinase inhibition is critical in kinase inhibition, and successful completion of this project will provide an important understanding of protein dynamics and facilitate screening for selective inhibitors of Cdk2 that alter the conformational equilibrium in a more productive manner.

Colette Rogers

Hendrickson and Bielinsky Laboratories

Homologous recombination (HR) is a key pathway for the precise repair of DNA double-stranded breaks and other DNA replication-associated lesions. HR promotes repair of lesions by using the non-damaged sister chromatid as a template for repair. Due to its essential role in maintaining genome stability, the HR pathway is tightly regulated and both loss of HR and illegitimate hyper-recombination are associated with genomic instability and carcinogenesis. Our main objective is to understand how the HR pathway is regulated by RAD18, a RING-type E3 ubiquitin ligase that is best known for its role in promoting DNA damage tolerance. This objective is based in part on preliminary data from our laboratory demonstrating that human RAD18 -/- cells exhibit abnormally high levels of sister chromatid recombination and chromosomal radial formations, indicators of genomic instability. Additionally, a survey of The Cancer Genome Atlas (TCGA) revealed that RAD18 inactivating deletions occur in human cancers at high frequencies, with a particularly high prevalence in cervical and renal cell tumors. We aim to understand the molecular mechanism(s) by which RAD18 suppresses hyper-recombination in human cells and protects normal cells from genome instability. This research will provide long sought-after insight into how hyper-recombination is suppressed and should open new therapeutic avenues of treating patients harboring RAD18 mutations.

Naomi Widstrom